Energy Intensive Buildings Trends and Solutions Data Centers

Bruce Myatt, PE 49 Stevenson Street, Ste 200 San Francisco, CA 94105 415-748-0515 Critical Facilities Round Table Energy Committee 7-21-06

Agenda

- Overview of energy use in technology facilities
- New and existing facility energy cost saving strategies
 - Data centers
 - Clean rooms
 - Laboratories
- Implications of utility rate structures
- Conclusions
- How to get Started

Energy Reduction Strategies Data Centers, CleanRooms & Laboratories

- Technology Buildings
 - Data Center Heat Loads Air cooling
 - Clean Room Environments Filtered air changes
 - Biotech Process Confinement Pressurized air
 - R&D Labs Bio-chemical Exhaust
- Technology Priorities
 - Fast track design-build
 - Systems reliability and performance
 - Operator and process efficiencies
- Technology Operating Costs
 - Electricity is highest operating cost in CA facilities
 - HVAC accounts for 50% of power consumption

Energy Reduction Strategies Data Centers, CleanRooms & Laboratories

- Realistic Strategies
 - Proven techniques
 - Easy to implement
 - Minimal risk
 - Low cost
 - Flexible operations
 - ROI of 2 years or better
 - Facility type specific solutions

Energy Reduction Strategies Data Centers

Where are the losses?

- Mechanical systems
 - The ratio between mechanical load and the power delivered to the servers varies between 0.7 and 1.5
- Electrical systems
 - System efficiency varies between 75% and 92%
- Computer and process equipment
 - Power supply efficiency varies between 55% and 75%

Components of Energy Use (150 w/sf => 267 watts/sf)

Energy Use Component	Watts/SF	Percent
Data Center Heat Load (UPS)	150	56%
Chiller Load @45F	35	13%
Electric Room Heat Load	21	8%
CRAH Fan Power	18	7%
Fan Heat Load	12	5%
Data Center Heat Load (lighting and skin)	5	2%
Back of House Skin load(4 w/sf)	4	2%
Chilled Water Pump	4	2%
Heat Load	4	1%
Condenser Water Pump	3	1%
Ventilation Latent Load	3	1%
Ventilation Sensible Load	2	1%
Cooling Tower	2	1%
Chiller Heat Rejection to Ambient	1	0%
Back of House Lighting (.5 w/sf operating)	1	0%
Total	267	100%

Energy Use in Data Centers Mechanical Loads

Components of Energy Use

Energy Use in Data Centers Highest Demand

Energy Use of HVAC Components

Data Center Energy Reduction Strategies

- Alternate 1 Increasing chilled water supply temperature (thus air supply temperature)
- Alternate 2 Using water-side economizer with Alternate 1
- Alternate 3a Using chilled water cabinets with Alternates 1 and 2
- Alternate 3b Using air-side economizer with Alternates 1 and 2

Alternate 1 - Chilled Water Supply Temperature

- Traditional approach is to supply 45°F water to yield 55°F air
- Why? Mostly to overcome hot spots and combat against recirculation of air
- ASHRAE recommends 72°F at the inlet to the server
- Air coming out of floor could be 65°F, meaning higher chilled water supply temperature
- Need to analyze energy savings based on varying supply water temperatures

Case Study

- Used 1000-ton water-cooled centrifugal chiller
- Rated at 0.565 kW/ton at 45°F chilled water supply and 85°F condenser water as base case
- Looked at varying chilled water supply from 45°F to 55°F
- Also used bin data to determine number of hours at wet bulb temperatures (which determine what condenser water temperature is available)
- Used Los Angeles as a location

Case Study (based on performance data from chiller manufacturer)

Energy (KW/Ton)						
Chilled Water	Entering C	Entering Condenser Water Temperature (F)				
Temperature (F)	85	75	65	60	Integrated	
45	0.565	0.463	0.376	0.338	0.369	
47	0.535 C N	Or 0.439	0.353	0.315	0.346	
49	0.509	90/41Rec	0.332	0.289	0.321	
51	0.483	0.387	UCTOR	0.271	0.301	
53	0.459	0.367	0.288	0.262	0.287	
55	0.432	0.346	0.267	0.256	0.275	

Standard ARI formula for determining rated kW/ton (optimizing condenser water temperature)

Case Study

Results

- Going from 45°F to 55°F chilled water supply temperature (approximately 55°F to 65°F supply air temperature) yields approximately 25% reduction in kW/ton
- Assuming 50,000 SF data center at 150 W/SF, annual chiller energy usage would be approximately 3,800,000 kWH
- Based on average rate of \$0.10/kWH, savings over base case = \$380,000

Impacts of Loss of Cooling

Room B

Room A

150000 ission Critical Facilities, Inc. - Proprietary and Confidential

ssion critical facilities®

100 w/sf

Considerations

- Higher supply temperatures requires better airflow management
- Discourage mixing of cold aisle supply air from hot aisle exhaust air
- Compartmentalization of cold aisle/hot aisle to eliminate recirculation/convective forces
- Higher hot aisle temperatures increases chance of thermal runaway
- May require chilled water storage/UPS power for some HVAC equipment

Alternate 2 - Water-side economizer

- Use of condenser water as chilled water
- Only need to run cooling tower fan and pumps
- Higher design chilled water temperature (55°F) extends use of economizer
- Energy savings dependent on wet-bulb (moisture content of air) temperature
- Regions with lower wet-bulb temperatures are favorable
- Need approximately 7 to 10°F "approach" (wet bulb must be 7 to 10°F less than design chilled water temperature)
- 45°F to 48°F ambient wet-bulb

Clear Grid

Custom Weather

Alternate 2 - Water-side economizer

- Means that 3500 hours per year, only require cooling tower fans and pumps
- Based on average rate of \$0.10/kWH, savings in addition to Alternate 1 = base case = \$465,000; over base case = \$850,000

Considerations

- More complicated controls
- Chiller plant sequencing (risk of restart problems when chillers are off line) – or stand-by operations
- Additional equipment (heat exchangers)
- Savings will vary greatly depending on location

Alternate 3a - Water-cooled cabinets

- Cabinets use higher chilled water temperature (55°F)
- Still air-cooled solution, but with controlled, engineered enclosure
- Currently available cabinets range from 15 to 30 kW
- Each cabinet requires 700 watts for fan power
- On average, water-cooled cabinet fans will require 7 to 10 watts/SF of power, compared to 15 watts/SF for CRAH fans
- Still need approximately 10 to 20% CRAH when cabinets are open or emergency

Alternate 3a - Water-cooled cabinets

 Using water-cooled cabinets and 20% CRAHs, annual savings in addition to alternate 2 = \$193,000; over base case = \$1.1MM

Considerations

- Since contained enclosure, thermal runaway risk increases
- Larger cabinets 91" tall x 31" wide x 47" deep
- Approximately \$15K to \$30K per cabinet installed (\$3500/ton), compared to \$30K for 30-ton CRAH (\$1000 per ton)
- Only cost-effective when using high density (>15 kW per cabinet) or when factoring in potential reduction in rentable square footage

Alternate 3b - Air-side economizer

- Use of outside air to cool data center
- Higher supply air temperature (65°F) extends use of economizer
- Energy savings dependent on dry-bulb (thermometer temperature) and wet-bulb (moisture content of air) temperature – enthalpy control
- Regions with lower average dry- and wet-bulb temperatures are favorable
- Need to control supply air temperature to produce optimal dry-bulb and moisture content – don't want air too dry

Air-side economizer

- Design will require central-station air handling units, with return/exhaust fan
- During full economizer, need only to run fans (no chiller, pumps or cooling tower)
- Need to discuss with server manufacturers to understand humidity tolerances

Alternate 3b - Air-side economizer

- Means that 3500 hours per year, only supply and exhaust fans
- Using air-side economizer will result in approximate annual savings in addition to alternate 2 = \$151,000; over base case = \$1.0MM
- Hourly simulation required to determine more accurate energy reduction due to variable moisture content

Considerations

- More complicated controls
- Must balance chiller compressor energy reduction and humidification
- Chiller plant sequencing (risk of restart problems when chillers are off line) or stand-by operations
- Different air-handling system approach
- Savings will vary greatly depending on location

Summary – Theoretical Savings Based on Strategies

Alternate	Cooling Plant Description	ooling Plant nual Energy Cost	,	Savings	Percentage
Base Case	45°F Water	\$ 2,768,748		Base	Base
Alternate 1	55°F Water	\$ 2,380,095	\$	388,653	14%
Alternate 2	Water-side Economizer	\$ 1,914,244	\$	854,504	31%
Alternate 3a	Water-Cooled Racks	\$ 1,721,524	\$	1,047,224	38%
Alternate 3b	Air-side Economizer	\$ 1,763,455	\$	1,005,293	36%

Note: data based on \$0.10/kWH

Other energy savings strategies

- Humidification versus outdoor air economizer
- Battery room heat recovery; payback usually less than 3 years
- Ice storage (not really energy savings, but utility cost savings)
- Control/monitoring for better airflow control

Optimizing Existing Data Center Facilities

- Air test and balance on air conditioning units
- Widen dead band of temperature/humidity to prevent fighting
- Seal floor openings
- Blank-off unused spaces in racks/cabinets
- Install supplemental units in high-density areas (to prevent overcooling)
- Take air flow/temperature readings to sync air delivery to actual load

Optimizing Existing Facilities

Summary

- Technology building energy reduction strategy is NOT "one size fits all"
- "Non-exotic" HVAC strategies 15% to 30%+ energy reduction
- Must explore and implement various strategies in existing facilities
- Utility rate structure will influence strategy

\$/Therm

Utility Cost and Rate Structure Considerations

How to get Started

- Pacific Gas & Electric Customer Energy Efficiency Programs
- Utility financed consulting services
- Utility implementation incentive programs

